Neurobiology 218: The Neural Basis of Behavior


Instructors:  Professors William T. Newsome, Eric I. Knudsen

Format:  Graduate seminar, emphasizing critical reading of the literature and student presentations.  Spring quarter, 2000, 3 units.

Organizational meeting:  Friday, March 31, 2:00 PM.  202 Fairchild (Neurobiology library).

Tentative meeting times:  Tuesday and Friday afternoons.  Exact times will be nailed down at the organizational meeting.

Prerequisite:  Neurobiology 200 or permission of an instructor.

Eligibility:  Due to heavy demand, the course will be open this year only to graduate students in the Neurosciences Program.  No auditors.

Description:  Graduate core course in systems neuroscience.  We will cover current topics in systems neuroscience as they relate to specific behavioral capacities ranging from perception and movement to attention and memory.

Grading:  Grades will be weighted equally on: 1) the major project for the term, and 2) oral participation in class discussions.  For most students (18), the major project will be an oral presentation of one course topic as listed below.  The remaining students will write a term paper, critically evaluating research on one of the topics below or an alternate topic approved in advance by the instructors.  The paper should be 15-20 pages in length, and should emphasize critical evaluation as opposed to recitation of facts.  Since class participation is the core of the course, excessive absences will not be treated lightly.  One absence during the term will be granted, no questions asked.  Other absences, if absolutely necessary, should be discussed in advance with one of the instructors.  We have tried to limit the readings to a reasonable amount each week, and we have tried to balance the amount of reading required of the two groups fairly across the entire term (there will be occasional imbalances in specific weeks).  Each group member is responsible for all papers assigned to her/his group each week.  In the Tuesday afternoon discussion sections, the instructors will call upon individual students to summarize goals, methods and particular results from each paper, and to provide critical evaluation of experimental design, data and conclusions.
 
 
 

Weekly schedule of topics:
 

Week         Date                  Topic

1                  March 31            Organizational meeting

2                  April 4                Grp. 1: Auditory space analysis
                                                  Grp. 2: Plasticity of auditory localization

3                 April 11               Grp. 1: Dynamic regulation of sensory maps in adults
                                                  Grp. 2: Dopamine pathways and reward-based learning

4                  April 18              Grp. 1: Contextual effects on visual processing of contours
                                                  Grp. 2: Manipulating motion discrimination with electrical microstimulation

5                  April 25              Grp. 1: Synchrony: Visual system
                                                  Grp. 2: Synchrony: Olfactory system

6                  May 2                 Grp. 1: Bat sonar
                                                  Grp. 2: Bird song

7                  May 9                 Grp. 1: Cerebellum: Motor learning
                                                  Grp. 2: Cerebellum: Dynamic filtering of sensory input

8                  May 16                Grp. 1: Primary motor cortex
                                                   Grp. 2: Locomotion

9                  May 23                Grp. 1: Coordinate transformations
                                                   Grp. 2: Visual attention

10                  May 30              Grp. 1: Memory: Hippocampus
                                                   Grp. 2: Memory: Cerebral cortex
 
 

Weekly readings:

Separate readings are designated for group 1 and group 2 in preparation for the Tuesday afternoon discussion sections.  Everyonereads the two starred papers (*) in preparation for the Friday afternoon presentations.
 

Week 2 - April 4, 2000

Group 1:  Auditory space analysis

*YE Cohen & EI Knudsen (1999) Maps versus clusters: different representations of auditory space in the midbrain and forebrain. Trends Neurosci. 22: 128-135.

CE Carr & M Konishi  (1990)  A circuit for detection of interaural time differences in the brain stem of the barn owl.  J. Neurosci. 10:3227-3246.

M Konishi, TT Takahashi, H Wagner, WE Sullivan & CE Carr  (1988) Neurophysiological and anatomical substrates of sound localization in the owl.  In: Auditory Function, GM Edelman, WE Gall & WM Cowan, eds, pp. 721-744.  John Wiley & Sons, Inc.
 

Group 2:  Plasticity of auditory localization

*MS Brainard & EI Knudsen (1998) Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum. J. Neurosci. 18:3929-3942.

EI Knudsen (1998) Capacity for plasticity in the adult owl auditory system expanded by juvenile experience. Science 279: 1531-1533.

W Zheng & EI Knudsen (1999) Functional selection of adaptive auditory space map by GABA-mediated inhibition. Science 284: 962-965.
 
 

Week 3 - April 11, 2000

Group 1:  Dynamic regulation of sensory maps in adults

*FH Recanzone, CE Schreiner & MM Merzenich (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13:87-103.

MP Kilgard & MM Merzenich (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714-1718.

P Tallal,  SL Miller, et. al. (1996) Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271: 81-84.
 

Group 2: Dopamine pathways and reward-based learning

*W. Schultz  (1998)  Predictive reward signal of dopamine neurons.  J. Neurophysiol.  80:1-27.

L. Tremblay and W. Schultz  (1999)  Relative reward preference in primate orbitofronal cortex. Nature  398: 704-708.

J.R. Hollerman and W. Schultz  (1998)  Dopamine neurons report an error in the temporal prediction of reward during learning.  Nat. Neurosci.  1:304-309.
 
 

Week 4 - April 18, 2000

Group 1: Contextual effects on visual processing of contours

*M.K. Kapadia, M. Ito & C.D. Gilbert  (1995)  Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys.  Neuron 15:843-856.

H. Zhou, H.S. Friedman & Rudiger von der Heydt  (preprint manuscript)  Coding of border ownership in monkey visual cortex.
 

Group 2: Manipulating motion discrimination with electrical microstimulation

*CD Salzman, KH Britten & WT Newsome (1990)  Cortical microstimulation influences perceptual judgements of motion direction.  Nature 346:174-177.

CD Salzman, CM Murasugi, KH Britten & WT Newsome (1992)  Microstimulation in visual area MT: effects on direction discrimination performance.  J. Neurosci. 12:2331-2355.
 
 

Week 5 - April 25, 2000

Group 1:  Sychrony: Visual system

*W. Singer  (1999)  Neuronal synchrony: a versatile code for the definition of relations?  Neuron 24:49-65.

P. Fries, P.R. Roelfsema, A.K. Engel, P. Konig and W. Singer  (1997)  Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry.  PNAS 94:12699-12704.

V.A.F. Lamme and H. Spekreijse  (1998)  Neuronal synchrony does not represent texture segregation.  Nature 396:362-366.

M.N. Shadlen and J.A. Movshon  (1999)  Synchrony unbound: a critical evaluation of the temporal binding hypothesis.  Neuron 24:67-77.
 

Group 2:  Synchrony: Olfactory system

*G. Laurent  (1996)  Dynamical representation of odors by oscillating and evolving neural assemblies.  TINS 19:489-496.

M. Stopfer, S. Bhagavan, B.H. Smith & G. Laurent  (1997)  Impaired odor discrimination on desynchronization of odour-encoding neural assemblies.  Nature 390:70-74.

 B.D. Rubin and L.C. Katz (1999) Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499-511.

For background reading concerning anatomical organization of the vertebrate olfactory system, see Kandel, Jessel and Schwarz (4th edition), the first 10 or so pages of chapter 32 (Smell and taste: the chemical senses).
 

Week 6 - May 2, 2000

Group. 1:  Bat sonar

*N. Suga  (1997)  Parallel-hierarchical processing of complex sounds for specialized auditory function. In: Encyclopedia of Acoustics. MJ Crocker (ed)  1409-1418.

WE O'Neill & N Suga  (1982)  Encoding of target range and its representation in the auditory cortex of the mustached bat.  J. Neurosci. 2: 17-31.

J Yan & N Suga  (1996) Corticofugal modulation of time-domain processing of biosonar information in bats. Science 273: 1100-1103.
 

Group. 2:  Bird song

*M Konishi  (1989)  Birdsong for neurobiologists.  Neuron 3:541-549.

D Margoliash  (1983)  Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow.  J. Neurosci. 3:1039-1057.

SW Bottjer, et. al. (1984) Forebrain lesions disrupt development but not maintenance of song in passerine birds. Science 224: 901-902.

M.S. Brainard and A.J. Doupe,  Interruption of a basal ganglia-forebrain
circuit prevents plasticity of learned vocalizations.  (in press)  Nature.
 
 

Week 7 - May 9, 2000

Group. 1:  Cerebellum: Motor learning

*JL Raymond, SG Lisberger & MD Mauk (1996) The cerebellum: a neuronal learning machine? Science 272: 1126-1131.

DA McCormick & RF Thompson (1984) Neuronal responses of the rabbit cerebellum during acquisition and performance of a classically conditioned nictitating membrane-eyelid response. J Neurosci. 4: 2811-2822.

JE Steinmetz, DG Lavond & RF Thompson (1989) Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse 3: 225-233.
 

Group 2: Cerebellum: Dynamic filtering of sensory input

*D Bodznick, JC Montgomery & M Carey (1999) Adaptive mechanisms in the elasmobranch hindbrain. J Exp. Biol. 202: 1357-1364.

J Bastian (1996) Plasticity in an electrosensory system. I. General features of a dynamic sensory filter. J Neurophysiol. 76: 2483-2496.

CC Bell, et. al. (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387: 278-281.
 
 

Week 8 - May 16, 2000

Group. 1:  Primary motor cortex

*S Kakei et. al. (1999) Muscle and movement representations in the primary motor cortex. Science 285: 2136-2139.

MH Schieber & LS Hibbard (1993) How somatotopic is the motor cortex hand area? Science 261: 489-492.

AF Carpenter et. al. (1999) Motor cortical encoding of serial order in a context-recall task. Science 283:1752-1757.

For background reading concerning the functional organization of the motor cortex, see Kandel, Jessel and Schwarz (4th edition), chapter 38, pages 756-770.
 

Group. 2: Locomotion

*JR Cazalets et. al. (1995) Localization and organization of the central pattern generator for hindlimb locomotion in newborn rat. J. Neurosci. 15: 4943-4951.

DA McCrea et. al. (1995) Disynaptic group I exctation of synergist ankle extensor motoneurones during fictive locomotion in the cat. J. Physiol. 487: 527-539.

For background reading concerning the control of locomotion by the spinal cord, see Kandel, Jessel and Schwarz (4th edition), chapter 37.
 
 

Week 9 - May 23, 2000

Group. 1:  Coordinate transformations

*A.P. Batista, C.A. Buneo, L.H. Snyder and R.A. Andersen  (1999)  Reach plans in eye-centered coordinates.  Science 285:257-260.

MS Graziano, A Yap and CG Gross  (1994)  Coding of visual space by premotor neurons.  Science 266:1054-1057.

M.S. Graziano  (1999)  Where is my arm?  The relative role of vision and proprioception in the neuronal representation of limb position.  PNAS 96:10418-10421.
 

Group. 2:  Visual attention

*S. Treue and J.H.R. Maunsell  (1996)  Attentional modulation of visual motion processing in cortical areas MT and MST.  Nature 382:539-541.

J.A. Brefczynski and E.A. DeYoe  (1999)  A physiological correlate of the ?spotlight? of visual attention.  Nat. Neurosci. 2:370-374.

P.R. Roelfsema, V.A.F. Lamme and H. Spekreijse  (1998)  Object-based attention in the primary visual cortex of the macaque monkey.  Nature 395:376-381.
 
 

Week 10 - May 30, 2000

Group. 1:  Memory: Hippocampus

*G. Riedel, J. Michea, et al.  (1999) Reversible neural inactivation reveals hippocampal participation in several memory processes.  Nat. Neurosci.  2:898-905.

R.E. Hampson, J.D. Simeral and S.A. Deadwyler  (1999)  Distribution of spatial and nonspatial information in dorsal hippocampus.  Nature 402:610-614.

M. Mayford, M.E. Bach, Y. Huang, L. Wang, R.D. Hawkins, and E.R. Kandel  (1996)  Control of memory formation through regulated expression of a CaMKII transgene.  Science 274:1678-1683.
 

Group. 2:  Memory: Cerebral cortex

*H. Tomita, M. Ohbayashi, K. Nakahara, I. Hasegawa and Y. Miyashita  (1999)  Top-down signal from prefrontal cortex in executive control of memory retrieval.  Nature 401:699-703.

E.K. Miller, C.A. Erickson and R. Desimone (1996)  Neural mechanisms of visual working memory in prefrontal cortex of the macaque.  J. Neurosci. 16:5154-5167.

E.K. Miller and R. Desimone (1994)  Parallel neuronal mechanisms for short-term memory.  Science 263:520-522.